16 research outputs found

    Airborne methane remote measurements reveal heavy-tail flux distribution in Four Corners region

    Get PDF
    Methane (CH_4) impacts climate as the second strongest anthropogenic greenhouse gas and air quality by influencing tropospheric ozone levels. Space-based observations have identified the Four Corners region in the Southwest United States as an area of large CH_4 enhancements. We conducted an airborne campaign in Four Corners during April 2015 with the next-generation Airborne Visible/Infrared Imaging Spectrometer (near-infrared) and Hyperspectral Thermal Emission Spectrometer (thermal infrared) imaging spectrometers to better understand the source of methane by measuring methane plumes at 1- to 3-m spatial resolution. Our analysis detected more than 250 individual methane plumes from fossil fuel harvesting, processing, and distributing infrastructures, spanning an emission range from the detection limit ∼2 kg/h to 5 kg/h through ∼5,000 kg/h. Observed sources include gas processing facilities, storage tanks, pipeline leaks, and well pads, as well as a coal mine venting shaft. Overall, plume enhancements and inferred fluxes follow a lognormal distribution, with the top 10% emitters contributing 49 to 66% to the inferred total point source flux of 0.23 Tg/y to 0.39 Tg/y. With the observed confirmation of a lognormal emission distribution, this airborne observing strategy and its ability to locate previously unknown point sources in real time provides an efficient and effective method to identify and mitigate major emissions contributors over a wide geographic area. With improved instrumentation, this capability scales to spaceborne applications [Thompson DR, et al. (2016) Geophys Res Lett 43(12):6571–6578]. Further illustration of this potential is demonstrated with two detected, confirmed, and repaired pipeline leaks during the campaign

    Airborne methane remote measurements reveal heavy-tail flux distribution in Four Corners region

    Get PDF
    Methane (CH_4) impacts climate as the second strongest anthropogenic greenhouse gas and air quality by influencing tropospheric ozone levels. Space-based observations have identified the Four Corners region in the Southwest United States as an area of large CH_4 enhancements. We conducted an airborne campaign in Four Corners during April 2015 with the next-generation Airborne Visible/Infrared Imaging Spectrometer (near-infrared) and Hyperspectral Thermal Emission Spectrometer (thermal infrared) imaging spectrometers to better understand the source of methane by measuring methane plumes at 1- to 3-m spatial resolution. Our analysis detected more than 250 individual methane plumes from fossil fuel harvesting, processing, and distributing infrastructures, spanning an emission range from the detection limit ∼2 kg/h to 5 kg/h through ∼5,000 kg/h. Observed sources include gas processing facilities, storage tanks, pipeline leaks, and well pads, as well as a coal mine venting shaft. Overall, plume enhancements and inferred fluxes follow a lognormal distribution, with the top 10% emitters contributing 49 to 66% to the inferred total point source flux of 0.23 Tg/y to 0.39 Tg/y. With the observed confirmation of a lognormal emission distribution, this airborne observing strategy and its ability to locate previously unknown point sources in real time provides an efficient and effective method to identify and mitigate major emissions contributors over a wide geographic area. With improved instrumentation, this capability scales to spaceborne applications [Thompson DR, et al. (2016) Geophys Res Lett 43(12):6571–6578]. Further illustration of this potential is demonstrated with two detected, confirmed, and repaired pipeline leaks during the campaign

    Stroke genetics informs drug discovery and risk prediction across ancestries

    Get PDF
    Previous genome-wide association studies (GWASs) of stroke — the second leading cause of death worldwide — were conducted predominantly in populations of European ancestry1,2. Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis3, and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach4, we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry5. Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries

    Atmospheric constraints on 2004 emissions of methane and nitrous oxide in North America from atmospheric measurements and a receptor-oriented modeling framework

    No full text
    Methane and nitrous oxide are potent greenhouse gases whose atmospheric abundances have increased significantly in the past 200 years, together accounting for approximately half of the radiative forcing associated with increasing concentrations of carbon dioxide. In order to understand the factors causing increase of these gases globally, we need to determine their emission rates at regional to continental scales. We directly link atmospheric observations with surface emissions using a Lagrangian Particle Dispersion Model, and then determine emission rates by optimizing prior emissions estimates. We use measurements from NOAA's tall tower and aircraft program in 2004, The Stochastic Time-Inverted Lagrangian Transport model (STILT) driven by meteorological fields from a customized version of the Weather Research and Forecasting (WRF) model, and EDGAR32FT2000 and Global Emissions Inventory Activity (GEIA) as prior emission estimates. In the US and Canada, methane emission rates are found to be consistent with observations, while nitrous oxide emissions are significantly low, by a factor 2.5–3 in the peak emissions time period found to be February through May

    A randomized, double-blinded, placebo-controlled pilot study of probiotics in active rheumatoid arthritis

    No full text
    To augment capacity-building for microbiome and probiotic research in Africa, a workshop was held in Nairobi, Kenya, at which researchers discussed human, animal, insect, and agricultural microbiome and probiotics/prebiotics topics. Five recommendations were made to promote future basic and translational research that benefits Africans

    Harnessing microbiome and probiotic research in sub-Saharan Africa: recommendations from an African workshop

    Get PDF
    Abstract To augment capacity-building for microbiome and probiotic research in Africa, a workshop was held in Nairobi, Kenya, at which researchers discussed human, animal, insect, and agricultural microbiome and probiotics/prebiotics topics. Five recommendations were made to promote future basic and translational research that benefits Africans.Infectious Diseases, Division ofMedicine, Department ofMicrobiology and Immunology, Department ofPediatrics, Department ofPopulation and Public Health (SPPH), School ofScience, Faculty ofNon UBCMedicine, Faculty ofReviewedFacult
    corecore